Technology Development for the Whipple Mission Concept - Present Status and Future Work

R. P. Kraft¹, A. T. Kenter¹, C. A. Alcock¹ (PI), S. S. Murray^{2,1}, T. M. Gauron¹, M. Lose³, M. Werner⁴

¹ Smithsonian Astrophysical Observatory, ² Johns Hopkins University, ³ Markury Scientific, ⁴ JPL

Studying the Outer Solar

- Only a small volume of the Solar system has been studied in detail
- Remnant of formation of Solar system present in Kuiper belt, Sedna region, Oort cloud
- The rocky population of these regions could provide key inputs to models of formation and early history of Solar system
- Planetary prizes given for work on outer Solar system

	Min.	Max.	Best Est.
KBO	12,000	40,000	25,000
SRO	15	90,000	1,300
OCO	100	650	260

Need to continuously monitor tens of thousands of stars at 40 Hz

- Occultations occur in less than a second - MUCH faster than Kepler
- Can't telemeter light curves require massive onboard processing
- Onboard detection of occultation Equivalent Width algorithm (Roques+2003) $\frac{7}{EW} = \sum_{i=1}^{7} (1 F_i/\overline{F})$

$$i=1$$

Simulated Whipple Lightcurve

Instrumentation - The Whipple Photometer

- Teledyne H2RG HyVISI sensor + SIDECAR ASIC - 700 windows per sensor at 40 Hz (w/ CDS) - TRL 9
- Lightcurves processed by FPGA using EW algorithm - only candidate occultations sent to telemetry
- Whipple Technology Development Marry the two! Prove that it works.

3 Key Goals of WTD

- Demonstrate 700 windows at 40 Hz in H2RG
- Demonstrate 700 data streams at 40 Hz in FPGA
- Demonstrate detection of simulated occultations in complete systems

Laboratory Setup

Laboratory Setup - Schematic

Current Status

- H2RG + SIDECAR fully operational (15 e- readnoise)
- Occultation simulator fully operational
- Windowing software delivered and operational under evaluation
- EW algorithm tested (simulated and real/noisy data) and confirmed in Virtex 5 FPGA
- Multiple data streams confirmed 2000+ stars per sensor at 40 Hz (Whipple req is 700 stars at 40 Hz)

Whipple Occultation Lightcurves - Lab Data Processed by FPGA

Future Work - We're Almost There!

- Interface FPGA development kit with SIDECAR ASIC in progress
- Construct PCB board for FPGA and command interface
- Laboratory evaluation of EW alg., sensitivity, S/N performance, stability, etc.

Shameless Plug - X-ray Imaging Spectroscopy (Poster Gallery #4 - Kenter+

- Monolithic CMOS X-ray imaging spectrometer
- Microchannel plate optic
- X-ray studies
 of rocky
 bodies,
 planetary
 magnetosphe

Chandra image of Jupiter in four bands (Branduardi-Raymont+2007)

Simulated spectra of NEO